

A Positive Functional Modulator of ABCC6 Decreases Vascular Calcification and Improves **Kidney Function in a Rat Adenine Diet Model**

Daniel Crawford, Yong Ren, Patrick Stoiber, Darius Shubert, John Miller, Pui Yee Ng, Nathan Fuller, Robert Hughes Rectify Pharmaceuticals, 400 Technology Square, 2nd floor, Cambridge MA 02139 USA

Background	Positive Functional Modulators (PFMs) to unlock the pharmacotherapeutic potential of the ABC proteome		
 ATP-binding cassette (ABC) transporters are a large, phylogenetically conserved family with broad physiological and pathological relevance 	 ABC transporters are folded in the ER and trafficked to lipid membranes where they transport diverse substrates Genetic mutations can cause: 	ABC transporter dysfunction causes monogenic disease and is relevant to many common diseases	 Positive Functional Modulators (PFMs): Small molecule compounds that rescue mutant ABC transporter function PFM correctors can rescue mutant protein trafficking to
 CFTR is currently the only ABC transporter targeted for activation by approved drugs, 	–Protein trafficking defects –Substrate transport defects	Transport	

 ABC transporter proteins are associated with multiple human diseases:

chloride transport by correcting or potentiating transporter function

which address underlying genetic defects

driving cystic fibrosis (CF) to reestablish

- Rectify is leveraging understanding across the ABC superfamily to pursue Positive Functional Modulators (PFMs) of ABC transporters to treat a broad range of human diseases
- -Etiological causes of **rare monogenic** diseases
- -Predisposition to symptoms & severity of complex disease
- -Mechanistic association to pathways implicated in common disease

Trafficking

defect

– **PFM potentiators** can rescue mutant protein functional activity to reestablish substrate **transport**

reestablish membrane

localization

– PFMs also have potential to enhance WT ABC transporter biology

ABCC6 is a critical determinant of circulating PPi levels

RectifyER library accelerates PFM discovery

- Proprietary library is a rich collection of lead-like compounds enabling pan-ABC transporter drug discovery
- Screening diversity libraries allows enrichment of library through elaboration of new scaffold hits
- Deep structural and computational mining generates novel and diverse privileged scaffolds

HiBiT assays used to identify PFMs that increase ABCC6 protein

HiBit Lytic HiBiT (total protein) 1.67 EC50 = 29 nM RTYs DMSO و 1.2 LgBiT Protein 0.0001 0.001 0.01 0 1 100 [compound], µM Exo HiBiT (surface protein) exo-HiBit EC50 = 15 nM DMSO Add Nano-Glo® HiBi Extracellular Reagent o introduce LgBiT Prote substrate. LgBiT Protein HIBIT 0.0001 0.001 0.01 01 [compound], µM

Rectify screen using HiBiT split luciferase technology identifies hits that increase ABCC6 protein expression in 2 different formats: Lytic (quantifying total protein) or Exo (quantifying surface protein only) **RTY-822** increases ABCC6 protein and function *in vitro* in PHH

defect

Compound testing in primary human hepatocytes (PHH) demonstrated correlated increases in ABCC6 protein $(EC_{50} 211nM)$ and function $(EC_{50} 271nM)$ by RTY-822. ABCC6 mRNA levels were unchanged in these cells.

