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Highlights
ABC transporters are a 48-member
superfamily of membrane proteins that
move substrates across lipid mem-
branes and have broad biological rele-
vance based on tissue distribution and
substrate specificity.

21 ABC transporters are known etiologi-
cal drivers of rare monogenic disorders,
most of which lack disease-modifying
therapies; they are also genetically or
mechanistically associated with suscep-
tibility to more common and complex
diseases.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a
48-member superfamily of membrane proteins that actively transport a variety
of biological substrates across lipid membranes. Their functional diversity defines
an expansive involvement in myriad aspects of human biology. At least 21 ABC
transporters underlie rare monogenic disorders, with even more implicated in
the predisposition to and symptomology of common and complex diseases.
Such broad (patho)physiological relevance places this class of proteins at the
intersection of disease causation and therapeutic potential, underlining them as
promising targets for drug discovery, as exemplified by the transformative CFTR
(ABCC7) modulator therapies for cystic fibrosis. This reviewwill explore the growing
relevance of ABC transporters to human disease and their potential as small-
molecule drug targets.
CFTR (ABCC7) 2mutation causes cystic
fibrosis, which is effectively treated
with small molecule positive functional
modulators that rescue CFTR dysfunc-
tion, offering proof of principle for the
druggability of ABC transporters for the
treatment of other diseases.

The relevance of ABC transporters to
human disease and their amenability to
drug discovery and development high-
lights their potential for the development
of first-in-class therapeutics.
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ABC transporters: biological relevance
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a large, phylogenetically
conserved gene family (n=48) with broad physiological and pathological relevance [1,2]. In
humans, they are expressed throughout the body and transport a diverse range of substrates
across lipid membranes, including ions, lipids [2,3]. As such, ABC transporters are critical to a
number of biological functions, including bile secretion, [4,5] β-oxidation, [6] and reverse choles-
terol transport (RCT) [5]. Highlighting their importance, mutations in ABC transporter genes can
cause or contribute to an array of diseases involving many different tissues. To date, 21 ABC
transporters have been associated with monogenic disorders [2] with large genomic datasets
and mechanistic studies identifying additional associations with more common and complex
disease states (see Glossary), including Alzheimer’s disease (AD) and coronary artery disease
(CAD) [4]. At present, the cystic fibrosis transmembrane conductance regulator (CFTR
[ABCC7]) is the only ABC transporter targeted by an approved drug, which is for the treatment
of cystic fibrosis (CF) [2,3]. These CFTR-targeted pharmacological compounds can directly ad-
dress the underlying genetic CFTR defects driving CF and re-establish chloride transport to dra-
matically improve pulmonary function [1]. Deepening understanding of the molecular
mechanisms of action of these transformative therapies has illuminated the broader potential of
this protein class as pharmacotherapeutic targets. Notably, recently published studies have dem-
onstrated the ability of CFTR modulators, in addition to other pharmacological agents, to rescue
and/or enhance the expression and function of other ABC transporters [1,7]. Thus, a growing
awareness of ABC transporter pathophysiological salience, together with the ability of small-
molecule compounds to modulate transporter function, has opened the door for the development
of potential new first-in-class drugs that engage biologically rationalized ABC transporters for the
treatment of human disease. Here we provide an updated summary of the ABC transporter litera-
ture as it pertains to their relevance to human disease and potential as pharmacotherapeutic
targets. Furthermore, based on emerging understanding of ABC transporter structure and
chemistry, we highlight the value of a class-based approach to drug discovery that leverages
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Glossary
Complex disease: a human disorder
not exclusively defined by a single gene
and for which many known or unknown
genetic and environmental factors define
susceptibility, onset, and severity
Corrector: a positive functional
modulator that stabilizes ABC transporter
protein folding in the ER to increase
functional protein expression of trafficking
mutants or wild-type protein
Monogenic disease: a human
disorder, normally rare, in which
mutations in a single gene are both
necessary and sufficient for disease
manifestation
Positive functional modulator: a
small-molecule compound that
enhances the function of an ABC
transporter through any one of a number
of mechanisms
Potentiator: a positive functional
modulator that augments the function of
amutant orwild-type ABC transporter to
increase substrate transport
Structure-based drug design: a drug
discovery approach that leverages
atomic-resolution structures of drug
targets to predict and inform the rational
development of small-molecule therapies
Trafficking mutation: a genetic
mutation (normally missense) that results
in energetic instability during protein
folding, leading to ER-associated
degradation, preventing the protein from
reaching its target membrane
Transport mutation: a genetic
mutation (normally missense) in
membrane transporters that results in
impaired substrate movement across
the membrane
understanding across all ABC transporters to drive the identification and optimization of novel
drug-like molecules (Figure 1, Key figure).

ABC transporter structure and function
ABC transporters are transmembrane, ATP-binding proteins that use the energy released during
ATP hydrolysis to move substrates from one side of a lipid membrane to the other [2,4]. Overall,
human ABC transporters are localized to the plasma membrane and export substrates from the
cytoplasm; however, a subset of transporters are localized to specialized substructures, including
peroxisomes, lysosomes, photoreceptor disc membranes, andmitochondria (see Table S1 in the
supplemental information online) [3,8,9]. Generally, each ABC transporter protein is encoded by a
single gene and has 2 nonidentical transmembrane (TM) and 2 nucleotide-binding (NB) domains
[4]. These are called full transporters [3]. Other ABC transporters, called half transporters, are
encoded by genes containing only one TM-NB unit and so must homo- or hetero-dimerize with
another half transporter to form a functional protein [1,3,4,10]. TM domains (TMDs), which contain
6 TM α-helices, are typically the site of substrate binding [1,3,4] and vary considerably in sequence
to define substrate specificity [3,4]. By contrast, the structure and sequence of the NB domains
(NBDs), which bind and hydrolyze ATP, is highly conserved [1,3,4,10]. ATP hydrolysis induces a
conformational change in NBDs, which is transmitted to the TMDs to induce substrate transport
(Box 1) [3,4,11].

ABC transporters are grouped into 7 families, ABCA through ABCG, based on sequence and
structural homology [3,4]. Critically, many ABC transporter structures have been resolved to
atomic resolution, significantly advancing a mechanistic understanding of this protein class and
increasing their tractability for drug development (Table S1). Overall, the structural and functional
biology of ABC transporters is well established and comprehensively reviewed [3,8,9,12–18].
This article will address on the roles of ABC transporters in human disease—largely focusing
on ABC transporters with data supporting the potential for pharmacological correction—and
how knowledge of underlying disease mechanisms can be harnessed for the development of
transformative therapeutics that directly address ABC transporter dysfunction.

ABC transporter mutations as drivers of monogenic disease
To date, 21 ABC transporters have been identified as etiological drivers of raremonogenic disease
(i.e., with a Mendelian inheritance pattern) (Table 1). In such instances, rare mutations that grossly
impact protein function give rise to disease states linked to the underlying gene’s expression, localiza-
tion, function, and/or substrate specificity (Table S1) [4,19]. While severe mutations that lead to
complete loss of protein function (e.g., nonsense, frameshift, and structural mutations) are more
recognizable as causes of disease, missense mutations, which account for many pathogenic muta-
tions, can vary in mechanism and functional impact. Investigating and understanding pathogenic
missense mutations is required to clarify their salience to disease presentation. As such, a deep
understanding of the mutational landscape of a disease is critical for enabling the development of
targeted precision therapies. However, based on a handful of characterized disorders, including
CF, progressive familial intrahepatic cholestasis 2 (PFIC2), and Stargardt disease (STGD), there is a
mechanistic commonality to pathogenic ABC transporter missensemutations, principally their impact
on protein folding, leading to endoplasmic reticulum (ER) degradation (i.e., trafficking defects), or
protein function, which leads to decreased substrate transport (i.e., transport defects). Small-
molecule compounds have been identified that can rescue either reduced expression (through
protein stabilization) or diminished function (through transport potentiation). This underscores the
importance of a deep understanding of the molecular genetics of ABC transporter monogenic
disease, both in terms of enabling diagnosis and ensuring the development of the most mechanisti-
cally relevant compounds.
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Key figure

A drug discovery path towards transformative ABC transporter therapies
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Box 1. ABC transporter functional mechanisms are not precisely known

The exact mechanism by which ABC transporters move substrates across membranes is not yet fully understood, [3] but
there are three models hypothesized [4]. Given their diversity, there may be no one unifying model for all transporters.
However, greater insight into these mechanisms in specific ABC transporter-associated diseases will be invaluable in
the discovery and development of therapeutic potentiator compounds.

The alternating access model

The TMD substrate-binding site faces either the cytoplasm or the extracellular space based on NBD ATP-binding status
and therefore transporter conformation [4]

The ATP switch model

When facing the cytoplasm, the TMD binds the substrate with high affinity, but when the transporter changes conforma-
tion to face the extracellular space, the TMD binds the substrate with low affinity, facilitating its release extracellularly. Upon
ATP hydrolysis, NBD conformational change translates to the TMDs returning to their cytoplasmic-facing orientation [3,4]

The constant contact model

One NBD in a transporter binds ATPwith high affinity and the other with low affinity, alternating the high affinity domain with
each reaction cycle. This would allow the NBDs to constantly be bound to either ATP or ADP during the reaction cycle
[4,213]
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Monogenic liver disease
ABCB11, ABCB4, and Progressive Familial Intrahepatic Cholestasis
Progressive familial intrahepatic cholestasis (PFIC) is a collection of 6 rare, autosomal recessive
liver diseases, 2 of which—PFIC2 and PFIC3—are caused by mutations in ABC transporters
(ABCB11 and ABCB4, respectively) [20,21]. ABCB11 (also known as BSEP) and ABCB4, both
expressed at the hepatocyte canalicular membrane, facilitate secretion of bile components into
the biliary system [5,22–25]. ABCB11 actively transports bile acids while ABCB4 facilitates bile
phosphatidylcholine content through its floppase activity [26].

Together with bilirubin and cholesterol, bile acids and phospholipids comprise bile, which is
required for the digestion of fats and the absorption of dietary vitamins. Biallelic pathogenic muta-
tions in ABCB11 and ABCB4 result in pediatric onset of hepatic bile acid accumulation, which
leads to hepatotoxicity, resulting in fibrosis, cirrhosis, an increased risk of hepatocellular carcinoma,
and ultimately, liver failure [1,5,20,24]. Malabsorption of fat and nutrients leads to poor growth and
risk of failure to thrive [20]. Additionally, backflow of bile acids into the hepatic portal system leads to
increased serum bile acid concentration and the manifestation of pruritus (severe skin itching) [27].
Ultimately, in PFIC2, the extent to which bile acids can be exported from hepatocytes defines the
severity and onset of disease, such that more impactful mutations (e.g., nonsense and frameshift
mutations) give rise to the most severe and earliest onset forms, while missense mutations,
depending on their level of dysfunction, drive a varying degree of severity [28].
Figure 1. ABC transporters have broad pathophysiological relevance and drug discovery tractability, identifying them as
potential pharmacological entry points for the treatment of biologically rationalized monogenic and complex diseases.
Drug discovery methods for the development of ABC transporter small molecules include the integrated use of 1) high-
throughput screening of chemistry libraries against target specific assays to identify chemical hits that positively modulate
target expression and/or function and, 2) structure-based drug design to inform the rationalized optimization or prediction
of target active compounds facilitated by suitability of ABC transporters to cryo-EM structure determination. Together,
these approaches may enable the development of transformative ABC transporter therapies that can correct underlying
pathogenic mutations in monogenic disease or augment the function of wild-type ABC transporters within the context of
other complex and common diseases. Image created with BioRender.com. Abbreviations: ABC, ATP-binding cassette;
CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; cryo-EM, cryogenic electron microscopy;
WT, wild-type.
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Table 1. Human ABC transporters are involved in a variety of monogenic diseasesa

Transporter Monogenic disorder OMIM Mode System Symptomology Mechanism of disease 3D Protein
structure

Evidence of
pharmacological
correction

ABCA1 Tangier disease 205400 AR Liver HDL deficiency,
accelerated atherosclerosis,
coronary artery stenosis,
hepatosplenomegaly,
tonsils with orange
deposits, progressive
peripheral neuropathy,
distal muscle weakness

Reduced export of
cholesterol and
phospholipids to
apolipoproteins,
resulting in decreased
HDL biogenesis

Cryo-EM Yes

ABCA2 Intellectual
developmental
disorder with poor
growth with or
without seizures or
ataxia

618808 AR CNS Global developmental
delay, hypotonia, ataxia,
seizures, dysmorphic
features

Unknown Predicted
AlphaFold

N/A

ABCA3 Pulmonary
surfactant
metabolism
dysfunction type 3

610921 AR Lung Respiratory distress,
hypoxemia, pulmonary
hypertension

Reduced export of
surfactant components,
leading to reduced
surfactant production
and pulmonary alveolar
proteinosis

Cryo-EM Yes

ABCA4 Stargardt disease 248200 AR Retina Decreased visual acuity
and macular atrophy

Reduced NRPE
export, leading to
accumulation of toxic
bisretinoids, RPE cell
death, and
photoreceptor death

Cryo-EM Yes

ABCA12 Autosomal
recessive congenital
ichthyosis 4A

601277 AR Skin Abnormal skin scaling
over the whole body

Reduced
glucosylceramide
export required for
proper formation of
intercellular lipid layer
of the stratum
corneum and
secretion of kallikrein

Predicted
AlphaFold

N/A

ABCB2 Bare lymphocyte
syndrome type I

604571 AR Immune Recurrent pulmonary
bacterial infections, chronic
skin lesions, bronchiectasis,
immunodeficiency

Loss of antigen
transport from cytosol
into ER to form
peptide:MHC I

Cryo-EM N/A

ABCB3 Bare lymphocyte
syndrome, type I
due to TAP2
deficiency

604571 AR Immune Recurrent pulmonary
bacterial infections, chronic
skin lesions, bronchiectasis,
immunodeficiency

Loss of antigen
transport from cytosol
into ER to form
peptide:MHC I

Cryo-EM N/A

ABCB4 Progressive familial
intrahepatic
cholestasis 3

602347 AR Liver Jaundice, diarrhea,
pruritis,
hepatosplenomegaly,
elevated serum liver
enzymes and bile acids

Reduced export of
hepatic phospholipids,
leading to increased
biliary free bile acids
concentration,
cholangitis, and
cholestasis

Cryo-EM Yes

ABCB6 Dyschromatosis
universalis
hereditaria 3

615402 AD Skin Hyperpigmented and
hypopigmented macules
of the skin

Decreased
melanosome function

Cryo-EM N/A

ABCB7 X-linked
sideroblastic
anemia with ataxia

301310 X-linked Hemato-poietic Hypochromic microcytic
anemia with ring
sideroblast, nonprogressive
cerebellar ataxia

Decreased iron
homeostasis and
cytosolic iron-sulfur
containing proteins
due to lack of

Cryo-EM N/A
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Table 1. (continued)

Transporter Monogenic disorder OMIM Mode System Symptomology Mechanism of disease 3D Protein
structure

Evidence of
pharmacological
correction

iron-sulfur cluster
export from
mitochondria

ABCB11 Progressive familial
intrahepatic
cholestasis 2

601847 AR Liver Jaundice, diarrhea, pruritis,
hepatosplenomegaly,
elevated serum liver
enzymes and bile acids

Decreased hepatic
bile efflux, leading to
cholestasis

Cryo-EM Yes

ABCC2 Dubin-Johnson
syndrome

237500 AR Liver Jaundice, fatigue, dark
urine, abdominal pain,
hepatomegaly

Decreased export of
bilirubin conjugates to
bile ducts, leading to
hepatic buildup

Predicted
AlphaFold

N/A

ABCC6 Pseudoxan-thoma
elasticum

264800 AR Skin, eye,
vascular

Ivory colored papules,
lesions of the posterior
segment of the eye,
peripheral and coronary
arterial occlusive disease

Decreased export of
ATP, resulting in
reduced circulating
PPi and an increase in
ectopic calcification

X-ray
diffraction
(NDBs
only)

Yes

ABCC6 Generalized atrial
calcification of
infancy type 2

614473 AR Cardio-vascular Early onset vaso-occlusion
and cardiomyopathy

Severe calcification of
arterial internal elastic
lamina

X-ray
diffraction
(NDBs
only)

Yes

ABCC7 Cystic fibrosis 219700 AR Lung Persistent coughing,
frequent pulmonary
infections, shortness of
breath, exocrine
pancreatic insufficiency,
increased NaCl in sweat

Decreased chloride
ion efflux, resulting in
dehydrated mucus in
the airways and
blockage of pancreatic
exocrine outflow

Cryo-EM Yes

ABCC8 Familial
hyper-insulinemic
hyperglycemia

256450 AR Pancreas Hypoglycemia and
hyperinsulinemia

Decreased ATP
sensing resulting in
inactivation of the
KATP channel, leading
to constitutive insulin
secretion

Cryo-EM Yes

ABCC9 Intellectual
disability myopathy
syndrome

619719 AR Cardiac,
Skeletal,
vasculature

Global developmental
delay, hypotonia, muscle
weakness and fatigue,
brain white matter
abnormalities

Loss of channel activity
impacting cerebral
vasculature, impairing
blood flow to brain, and
cardio-myocyte
electrical activity

Predicted
AlphaFold

N/A

ABCD1 X-linked
adrenoleuko-
dystrophy

300100 X-linked CNS/PNS ADHD, cognitive deficits,
diminished visual acuity,
motor incoordination,
spastic paraplegia,
adrenal insufficiency

Decreased
peroxisomal import of
cytoplasmic VLCFA,
leading to cytotoxicity
and inflammatory
response

Cryo-EM N/A

ABCD3 Congenital bile
acid synthesis
defect 5

616278 AR Liver Hepatosplenomegaly,
cholestasis, fat-soluble
vitamin malabsorption,
jaundice, elevated liver
enzymes

Decreased transfer of
LCFA and bile acids
from cytosol to
peroxisome for
β-oxidation

Predicted
AlphaFold

N/A

ABCD4 Methylmalonic
aciduria and
homocystinuria,
cblJ type, inborn
error of vitamin B12
metabolism

614857 AR Metabolic Failure to thrive, pale
appearance, hypotonia,
seizures

Decreased cobalamin
transport from
lysosome to cytosol

Cryo-EM N/A

(continued on next page)
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Table 1. (continued)

Transporter Monogenic disorder OMIM Mode System Symptomology Mechanism of disease 3D Protein
structure

Evidence of
pharmacological
correction

ABCG5 Sitosterolemia 618666 AR Liver/GI High cholesterol, premature
CAD, accelerated
atherosclerosis, tendon and
tuberous xanthomas

Decreased sterol
transport in liver and
intestine

Cryo-EM N/A

ABCG8 Sitosterolemia 210250 AR Liver/GI High cholesterol,
premature coronary artery
disease, accelerated
atherosclerosis, tendon
and tuberous xanthomas

Decreased sterol
transport in liver and
intestine

Cryo-EM N/A

aAbbreviations: AD, autosomal dominant; ADHD, attention-deficit/hyperactivity disorder; AR, autosomal recessive; CAD, coronary artery disease; CNS, central nervous system;
Cryo-EM, cryogenic electron microscopy; ER, endoplasmic reticulum; GI, gastrointestinal tract; HDL, high-density lipoprotein; KATP, ATP-sensitive potassium channel LCFA,
long-chain fatty acid; MHC I, major histocompatibility complex I; N/A, not available; NBD, nucleotide-binding domain; NRPE, N-retinylidene-phosphatidylethanolamine; PNS,
peripheral nervous system; RPE, retinal pigment epithelium; VLCFA, very long-chain fatty acid.
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In ABCB4 deficiency, cholestasis is secondary to cholangiopathy in which the absence of neutralizing
phospholipids promotes accumulation of toxic bile, leading to cholangiocyte damage. ABCB4
genotypes drive a spectrum of disease phenotypes, with the most impactful ABCB4 deficiency
engendering earlier onset cholangiopathy and subsequent cholestasis (i.e., PFIC3), and milder geno-
types predisposing to less severe and later-onset forms of cholestasis [29,30].

PFIC is one of the top 5 reasons for liver transplant in children, [20] highlighting the need for
improved treatment options. Current pre-transplant approaches include detoxification of bile
through administration of ursodeoxycholic acid and reduction of bile acid reabsorption through
surgical or pharmacological biliary diversion [20,24,31,32]. In surgical biliary diversion, the bile
duct’s connection to the intestine is moved from the ileum, which typically reabsorbs bile acids
into circulation, to the large intestine; pharmacological biliary diversion uses ileal bile acid
transporter inhibitors to prevent this reabsorption. However, the long-term efficacy and response
rate to these therapies is limited and can be affected by patient genotype [31,32]. As such, a
disease-modifying treatment directly addressing underlying ABCB11 or ABCB4 mutations
could transform the care of PFIC2/3.

While not explicitly monogenic in nature, there is significant evidence of the involvement of ABC
transporter genes, especially ABCB4 and ABCB11, in cholestatic disease (Table 2). ABCB4
mutations are associated with low-phospholipid-associated cholelithiasis, [33,34] while ABCB11
mutations are linked to drug-induced liver injury, [35,36] biliary atresia, [37] primary intrahepatic
stones, [33,34]. Finally, mutations in both ABCB4 and ABCB11 are linked to intrahepatic cholesta-
sis of pregnancy [38,39].

Importantly, for the development of novel therapeutics to address these disorders, mutant
ABCB11 and ABCB4 demonstrate the capacity for pharmacological correction. In vitro, US
Food and Drug Administration (FDA)-approved CFTR mutation-correcting CF therapeutics
have been shown to rescue the dysfunction of PFIC associated ABCB11 and ABCB4mutations
[41,43,44]. The pharmacological chaperone 4-phenylbutyrate (4-PBA; see later) has similarly
demonstrated the capacity to correct protein folding and trafficking of these [44,45] and other
ABC transporter targets. Moreover, a short-term 4-PBA treatment in a pediatric patient with
PFIC2 decreased serum bile acid levels, attenuated pruritus, and increased canalicular BSEP
expression [46]. Collectively, these data speak to the potential and promise of developing small-
158 Trends in Molecular Medicine, February 2023, Vol. 29, No. 2
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Table 2. ABC transporters are associated with a variety of complex cardiometabolic, neurological, and liver diseasesa

Disease Transporter Evidence Refs

Cardiometabolic disease

Atherosclerosis/ coronary
artery disease

ABCA1 Strong GWAS association with ABCA1 mutations. ABCA1 is involved in foam cell formation.
Negative association between ABCA1 expression and atherosclerosis pathogenesis in human cells
and in many LoF models.

[119–121]

ABCA5 ABCA5-deficient macrophages increase susceptibility to atherosclerosis on LDLR KO background.
ABCA5-deficient cells had defective cholesterol efflux to HDL.

[122]

ABCC6 ABCC6 polymorphisms associated with risk of atherosclerosis or CAD—vascular calcification is a
risk factor for CAD. In vitro Kos show decreased cholesterol efflux and decreased HDL. In vivo
mouse Kos show increased HDL, but no increase in atherosclerotic plaques.

[123–125]

ABCG1 ABCG1mutations associated with risk of CAD/atherosclerosis. Negative correlation between protein
expression and atherosclerosis pathogenesis in human cells., Overexpression in vivo decreases
atherosclerosis. Involved in foam cell formation.

[126–129]

ABCG5/G8 Genetic associations between ABCG5 and ABCG8 polymorphisms and atherosclerosis or CAD risk.
Hepatic overexpression ABCG5/G8 in mice reduced atherogenic risk. Involved in the lipid-lowering
effects of phytosterols.

[130–132]

Dyslipidemia ABCA1 Genetic associations between ABCA1 variants and altered blood lipid levels, specifically blood HDL.
In animal cells, reducing ABCA1 expression decreases cholesterol efflux, and increased ABCA1 and
ABCG1 expression elevates HDL efflux. In mice fed high-fat and high-cholesterol diets, upregulating
ABCA1 expression increased HDL levels, but this effect was eliminated following ABCA1 KO.

[83,133]

ABCA5 ABCA5-KOmacrophages have decreased cholesterol efflux and, in vivo, can give rise to atherosclerosis.
ABCA1-KO macrophages are associated with increased ABCA5 expression. In a hyperlipidemia mouse
model, downregulating ABCA1 was associated with increased ABCA5 expression.

[122,134]

ABCA8 ABCA8 mutations are associated with decreased HDL-C levels in humans and mice. Abca8
overexpression in mice resulted in higher HDL levels.

[135]

ABCC6 ABCC6 variants are associated with increased plasma lipid and cholesterol levels.
Macrophage-specific ABCC6 KO in mice leads to reduced cholesterol efflux. Heterozygous ABCC6
mutation carriers exhibit hypercholesterolemia.

[123,124,136]

ABCG1 DNA methylation sites on ABCG1 are associated with changes in lipid levels. Increased ABCG1 and
ABCA1 expression correlates with high HDL-C in healthy individuals. Increased ABCA1 and ABCG1
levels in vitro leads to increased HDL efflux.

[137–139]

ABCG5/G8 Genetic associations between ABCG5 and ABCG8 variants and altered blood lipid levels. ABCG5/G8
overexpression in mice decreases dietary cholesterol uptake. In mice and humans, ABCG5/G8 is
involved in transintestinal cholesterol transport and potential increase of cholesterol excretion.

[133,140,141]

Type 2 diabetes ABCA1 Genetic studies link T2D and ABCA1 variants. In vitro, ABCA1 LoF and GoF variants are associated
with T2D outcomes. β-cell-specific ABCA1 KO resulted in β-cell cholesterol accumulation and
decreased glucose-dependent insulin secretion, while adipocyte-specific ABCA1 KO in mice fed a
high-fat diet resulted in elevated cholesterol storage in adipose, impaired glucose tolerance, and
reduced peripheral insulin sensitivity.

[83,142,143]

ABCA12 Beta-cell-specific ACBA12 deletion in mice results in impaired glucose-stimulated insulin secretion in
addition to other diabetes outcomes.

[144]

ABCG1 In vitro, ABCG1 LoF is associated with T2D pathogenesis. T2D patients have decreased ABCG1
expression in macrophages. In vivo, ABCG1 LoF is associated with T2D outcomes.

[145–147]

ABCG5/G8 ABCG8 mutations are a risk factor for T2D in some populations. Decreased ABCG8 expression
detected in intestine of T2D patients. In a model of nutritionally induced T2D, obese mice had
decreased ABCG8 protein levels in the liver and intestine.

[148–150]

Neurological disease

Alzheimer's disease ABCA1 Strong genetic association between ABCA1 and AD. LoF and expression evidence of ABCA1
correlate with Aβ levels in human cells in vitro and multiple ABCA1 LoF animal models and one GoF
animal model.

[82,85,91,96]

ABCA2 Variant identified as risk factor for EOAD and sporadic AD. Increased expression in vitro increases
Aβ levels while KD decreases Aβ levels. Regulates sphingosine levels, impacting APP transcription.

[12]

ABCA5 ABCA5 expression influences Aβ deposition in vitro. Ex vivo evidence indicates increased expression
of ABCA5 in the hippocampus of patients with AD.

[151]

(continued on next page)
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Table 2. (continued)

Disease Transporter Evidence Refs

ABCA7 Strong genetic association between ABCA7 and AD. Suppression of endogenous ABCA7 in several
different in vitro human cell lines resulted in increased β-secretase cleavage and elevated Aβ levels.
High ABCA7 protein levels are associated with early- and late-onset AD in ex vivo human tissue as
well as in multiple LoF animal models and one GoF animal model.

[82,115–117]

ABCB1 Directly interacts with Aβ to mediate efflux from CNS across BBB. Acts as gatekeeper for peripheral
Aβ entry into the CNS. LoF increases CNS levels, and pharmacological GoF increases cerebral
clearance of Aβ in a transgenic mouse model of AD.

[152]

ABCC1 Increased ABCC1 expression in vitro reduced extracellular Aβ and the ratio of α- versus
β-secretase-mediated APP cleavage. ABCC1-deficient mice had increased Aβ levels, and, in a
mouse model of AD, activation of ABCC1 reduced Aβ load.

[153,154]

ABCG1 Genetic association between ABCG1 variants and AD risk. In a human cell line, ABCG1 suppression
led to increased Aβ, whereas increased ABCG1 reduced Aβ levels. CNS Aβ levels were elevated in
ABCG1 KO mice.

[155–157]

ABCG2 ABCG2 directly interacts with Aβ. LoF increases cerebral Aβ. Acts as gatekeeper for peripheral Aβ
entry into CNS: KO increased flow of Aβ from lateral to basolateral side of BBB.

[152]

ABCG4 Increased ABCG4 expression found in human AD brain cells, which the literature suggests is
compensatory. ABCG4 is important in Aβ export and memory in mouse models.

[157–159]

Parkinson's disease ABCA5 Elevated ABCA5 in human PD brains and in a human neuronal cell line. ABCA5 KO mice develop a
lysosomal disorder, which is a leading risk factor of PD, but do not develop significant brain abnormalities.

[160,161]

ABCB2 ABCB2 (TAP1) was elevated in both in an in vitro (mouse) PD model and in vivo (PD brain tissue, rat
PD model); could act as a compensatory pathway of neuroinflammation. No causative LoF or GoF
in vivo associations are known.

[162,163]

ABCB3 ABCB3 (TAP2) was elevated in an in vivo rat model of PD as a compensatory pathway of
neuroinflammation. No causative LoF or GoF in vivo associations are known.

[163,164]

Multiple sclerosis ABCA1 Evidence of ABCA1 LoF was found in active lesions from MS donors. Differential ABCA1 protein
expression seen in multiple studies, with one study demonstrating a strong correlation between
ABCA1 expression levels and MS severity.

[165,166]

Huntington's disease ABCB10 Evidence of LoF and GoF was found in a HdhQ111 mutant striatal mouse cell line. ABCB10 is
downregulated in a HD patient fibroblast cell line and in the R6/2 HD mouse model.

[167]

Frontotemporal dementia ABCD1 Case studies link a single ABCD1 mutation to FTD. ABCD1 is upregulated in FTD brain tissue in
response to excess VLCFAs, which build up in patients with FTD—because ABCD1 typically is
responsible for removing VLCFAs, upregulation of ABCD1 is a compensation mechanism.

[168–170]

Hirschsprung disease ABCD1 Two variants of ABCD1 were found in HSCR patients. ABCD1 KO in neuronal cells demonstrated
impaired development of a neuronal-like phenotype, delayed network formation, higher apoptosis
rates, and fewer proliferative cells, suggesting that ABCD1 may contribute to disease risk based on
the multifactorial origin of HSCR.

[171]

Neuropathic pain ABCC8 ABCC8 (SUR1) deletion prevents and ameliorates development of NP behaviors. However, some
in vivo animal model studies suggest that reductions in KATP channel activity can worsen NP
symptoms. One in vitro study showed that enhancing the function of the KATP channel could be a
potential therapeutic for NP.

[172–174]

Chemotherapy-induced
peripheral neuropathy

ABCA1 Microglia-specific ABCA1/G1 KD induces pain in naïve mice and prevents AIBP from reversing CIPN
allodynia; additionally, ABCA1/G1 deficiency reprograms microglia to a CIPN-like phenotype.

[175]

Psychiatric disorders ABCA13 Disease cohort and pedigree analyses indicate enrichment of rare coding and cytogenic ABCA13
mutations in patients with schizophrenia, depression, and bipolar disorder. ABCA13-KOmice exhibit
a decreased prepulse inhibition response, indicating changes to sensorimotor gating also observed
in patients with psychiatric disorders, including schizophrenia and bipolar disorder.

[176,177]

Liver disease

Nonalcoholic
steatohepatitis

ABCB11 ABCB11 (BSEP) expression was altered in liver biopsies from patients with NASH/NAFLD. In vitro
data suggests improved disease outcomes associated with ABCB11 upregulation. BSEP deletion
aggravates NASH in mice, and overexpression is protective.

[178–181]

Cholestasis ABCC4 ABCC4-KO mice have worsened disease outcomes in obstructive cholestasis. ABCC4 expression in
liver samples of patients with obstructive cholestasis was significantly increased when compared
with control liver tissue samples.

[182–184]
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Table 2. (continued)

Disease Transporter Evidence Refs

ABCC12 A homozygous truncating pathogenic variant of ABCC12 and 5 additional rare variants were
identified in a whole-exome and candidate gene sequencing study of children with cholestasis. Loss
of ABCC12 in zebrafish and mice resulted in cholangiocyte apoptosis.

[185]

ABCG8 Multiple genetic associations between ABCG8 variants and cholestasis. Ex vivo data demonstrate
reduced ABCG8 protein expression in human cholestatic livers. ABCG8-KO mice are more susceptible
to bile acid-induced cholestasis than non-KO mice.

[186–188]

Intrahepatic cholestasis of
pregnancy

ABCC2 Multiple genetic studies show ABCC2 associations with ICP. Ex vivo human and in vivo mouse
studies demonstrate both GoF and LoF models.

[189,190]

ABCB11 Multiple genetic studies link ABCB11 mutations with ICP. [38,39]

ABCB4 Multiple genetic studies link ABCB4 mutations with ICP. [39]

Low phospholipid-
associated cholelithiasis

ABCB4 Multiple genetic studies link ABCB4 mutations with LPAC. [34]

Rheumatoid disease

Gout ABCG2 Both common and rare ABCG2 variants cause gout. [191,192]

Ophthalmological disease

Age-related macular
degeneration

ABCA1 Multiple genetic studies link mutations in ABCA1 with AMD. Conditional KO mouse develops
drusenoid-like deposits, photoreceptor dysfunction, and delayed dark adaptation.

[83]

Glaucoma ABCA1 Several GWAS studies have identified ABCA1 to be associated with POAG. ABCA1 regulates
Cav1/eNOS/NO signaling to influence ocular hypertension and annexin, which then modulate ocular
inflammation.

[83]

aAbbreviations: AD, Alzheimer’s disease; AIBP, apolipoprotein AI-binding protein; AMD, age-related macular degeneration; APP, amyloid precursor protein; BBB, blood-
brain barrier; BSEP, bile salt export pump; CAD, coronary artery disease; Cav1, caveolin-1; CIPN, chemotherapy-induced peripheral neuropathy; CNS, central nervous
system; eNOS, endothelial nitric oxide synthase; EOAD, early-onset Alzheimer’s disease; FTD, frontotemporal dementia; GoF, gain of function; GWAS, genome-wide
association study; HD, Huntington’s disease; HDL, high-density lipoprotein; HDL-C, high-density lipoprotein cholesterol; HSCR, Hirschsprung disease; KATP, ATP-sensitive
potassium channel; KD, knockdown; KO, knockout; LAPC, low phospholipid-associated cholelithiasis; LDLR, low-density lipoprotein receptor; LoF, loss of function; LPAC,
low phospholipid-associated cholelithiasis; MS, multiple sclerosis; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NO, nitric oxide; NP,
neuropathic pain; PD, Parkinson’s disease; POAG, primary open-angle glaucoma; T2D, type 2 diabetes; VLCFA, very long-chain fatty acid.
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molecule ABCB11 and ABCB4 positive functional modulators for the treatment of PFIC2/3, and
other associated diseases.

ABCC6 and Pseudoxanthoma Elasticum
Pseudoxanthoma elasticum (PXE), caused by biallelic mutations in ABCC6, is a mineralization
disorder affecting elastic fiber-rich tissues, including the retina, circulatory system, and skin
[5,47,48]. There are approximately 150,000 cases of PXE worldwide, and symptoms include
vision loss, atherosclerosis, and skin lesions [49].

ABCC6 is primarily expressed in the liver and kidney, [5,50,51] and though it does not directly affect
liver function, hepatic ABCC6 is significant in releasing ATP from the hepatocyte basolateral
membrane into the bloodstream [5,51,52] where it is converted by ectonucleotidases such as
ENPP1 to adenosine monophosphate (AMP) and pyrophosphate (PPi). Normally, PPi prevents
calcification, but in the absence of ABCC6 function, circulating PPi is decreased, leading to ectopic
mineralization of elastin fibers in themidlaminar layer of the dermis, in Bruch’smembrane of the eye,
and in midsized arteries [5,49,51–53]. Symptomologically, PXE presents with yellowish skin
lesions, retinal neovascularization leading to central vision loss, and progressive claudication
from arterial narrowing, which also increases risk of cardiovascular events [54].

Along with PXE, ABCC6mutations can lead to other types of arterial calcification, [5,47,55] which
are associated with increased risk of cardiovascular disease. Most notably, generalized arterial
calcification of infancy type 2 (GACI-2), a rare, severe, and early onset form of ABCC6 deficiency,
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leads to vaso-occlusion and cardiomyopathy in children [56]. There is no established genotype-
phenotype correlation between ABCC6 mutations, disease onset, and disease severity, suggest-
ing the role for genetic modifiers [57]. Currently, PXE and GACI-2 are treated using the standard of
care for individual symptom sets, such as for choroidal neovascularization, atherosclerosis, or skin
lesions; no ABCC6-focused therapies exist [54]. However, pharmacotherapeutics that increase
circulating PPi concentrations (through inhibiting PPi degradation or promoting synthesis) are cur-
rently under clinical investigation. Notably, and in line with observations of other ABC transporters, the
butyrate analogue, 4-PBA, demonstrates the capacity to rescue PXE-associated ABCC6
trafficking mutations. Specifically, 4-PBA-mediated restoration of ABCC6 plasma membrane
expresion has been observed in mutant ABCC6-expressing cell lines, zebrafish models, and
mouse models of PXE, [58–60] again highlighting a path towards novel PXE and GACI-2 therapies.

Monogenic retinal disease
ABCA4 and Stargardt Disease
Stargardt disease (STGD) describes several forms of juvenile macular degeneration due to muta-
tions in ABCA4 [4,61]. STGD is one of the more common causes of vision loss in young adults,
with a prevalence of 1:8,000 to 1:10,000 [62]. Characteristic pathological features of STGD include
macular atrophy with conserved peripapillary area around the optic nerve, and fundus flecks [61].

In a healthy retina, photoreceptor cell-localized ABCA4 protein flips the retinoid N-retinylidene-
phosphatidylethanolamine (NRPE) from the lumen-facing leaflet of the disc membrane to the
cytoplasmic face, which is required for proper NRPE clearance [4]. Clearance of NRPE is vital to
photoreceptor survival, as its breakdown products, including bisretinoid N-retinyl-N-retinylidene
ethanolamine, are cytotoxic, leading to lipofuscin generation and retinal pigment epithelial cell
degeneration following disc phagocytosis [4].

The molecular genetics of STGD have been extensively researched and reviewed [4]. ABCA4 is
one of the largest ABC transporter genes, comprised of 50 exons in which >1000 mutations
have been identified, many of which can impact both protein expression and activity [4]. Of
these, 60% are missense mutations [4]. More functionally deficient mutations generally give rise
to earlier onset and more severe clinical presentations, [63] presumably due to the more rapid
accumulation of NRPE. At present, treatment of STGD is limited to occupational therapy and
visual aids. However, relying on previously identified pharmacological correctors used to modify
CFTR in CF, could potentially improve STGD-associatedmutations as lumacaftor successfully res-
cued plasma membrane expression of STGD-associated ABCA4 trafficking mutations in vitro [64].

Monogenic nervous system disease
ABCD1 and X-linked adrenoleukodystrophy
X-linked adrenoleukodystrophy (X-ALD), driven by mutations in ABCD1, defines 3 clinical disease
subtypes classified by age of onset and symptom severity, and in total affecting approximately
1:20,000 males [65]. The 2 most common types of X-ALD—childhood cerebral ALD (cALD) and
adrenomyeloneuropathy (AMN)—account for ~40% and ~50% of X-ALD cases, respectively [6].

Fatal if untreated, [6,66] cALD is a rapidly progressing, central demyelinating, and inflammatory
disease resulting in cognitive and sensory decline [6,66]. By contrast, AMN develops in early
adulthood and involves slower but progressive peripheral and sometimes spinal demyelination,
[6] leading to weakness, spasticity, and bowel and bladder dysfunction among other
symptoms [6,66]. The remaining 10% of patients are characterized as having Addison’s
disease, a form of primary adrenal insufficiency that leads to corticosterone deficiency without
neurodegeneration [67].
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ABCD1 is a half-transporter expressed in many cell and tissue types throughout the bodywith the
highest expression in fat, such as in the white matter of nervous system tissues [66]. ABCD1 is a
peroxisomal transporter that traffics very-long-chain fatty acids (VLCFAs) from the cytosol into the
peroxisome for degradation via beta-oxidation [2,3,68]. A lack of ABCD1 function, then, allows for
the buildup of VLCFAs in plasma and tissues, which are hallmarks of X-ALD [2,6,65]. This leads to
reactive oxygen species generation, apoptosis, and the progression of disease symptoms [3,66].

Despite the spectrum of disease severity, there is no established genotype-phenotype correlation
that predicts disease progression, suggesting a strong role for as yet unidentified disease
modifiers. Hematopoietic stem cell transplantation (HSCT) can be an effective, therapeutic
approach to cALD, suggesting that neuroinflammation differentiates cALD from other forms of
X-ALD [69]. Importantly, while HSCT is effective at treating the neuroinflammation associated
with cALD, patients can still develop AMN symptoms later in life, highlighting the need for additional
therapeutic options [70]. The specific cell types driving AMN and Addison’s disease are not well
established and, at present, there are no approved therapies for the treatment of AMN. However,
pharmacological agents that augment ABCD2 expression, which is a peroxisomal VLCFA trans-
porter, demonstrate preclinical efficacy in mouse models of X-ALD and are currently under clinical
investigation [71]. Moreover, 4-PBA-induced ABCD2 expression and function in patient-derived
cells andABCD1KOmice, [72] opeing the door to newpharmacotherapeutic strategies for treating
X-ALD through directly augmented ABCD2 and/or rescued ABCD1 function.

ABC transporters in multigenic disease
While mutations in ABC transporter genes exert significant effects in isolation, they also occur along-
side other disease-causing mutations or disease processes. Loss of ABC transporter function, then,
can be one of many simultaneous factors that contribute to disease pathogenesis as evidenced by
the role of ABC transporters in multigenic/complex diseases. These associations span the spectrum
of therapeutic areas and are too numerous for comprehensive discussion, but associations around
neurodegeneration, cardiometabolic, and liver disease warrants mention (see Table 2).

ABCA1
ABCA1 is expressed across many cell types, including endothelial cells and hepatocytes
[5,73,74]. ABCA1 transports phospholipids and cholesterol, but importantly, also transports
cholesterol from peripheral cells and onto lipid-poor apolipoprotein A1 [5,75–79]. Loss of
ABCA1 function, then, leads to insufficient cholesterol excretion, as exemplified by its role in
Tangier disease (Table 1). While Tangier disease is rare and generally well-managed, ABCA1’s
role in lipid homeostasis is of relevance to a number of other human disorders, including AD
and cardiovascular disease (Table 2).

Alzheimer’s disease (AD), the most common form of dementia, is characterized by the formation
of amyloid-β (Aβ) plaques and neurofibrillary tangles, which interfere with normal cellular function,
causing progressive neurodegeneration and cognitive decline [80]. Aβ peptides, the major
protein component of Aβ plaques, are generated by β-secretase-mediated proteolysis of amyloid
precursor protein (APP), which occurs in ordered microdomains of the plasma membrane called
lipid rafts [81]. A number of ABC transporters have been associated with AD, most based on their
transport of lipid species that indirectly influence Aβ generation and clearance or their direct
transport of Aβ to facilitate clearance from the central nervous system (CNS) [12].

Multiple genome-wide association studies (GWAS) have identified ABCA1 variants contributing to
AD susceptibility [82]. ABCA1 promotes cholesterol efflux from numerous cell types, including
neurons and glia [83]. Loss of ABCA1 function, then, leads to insufficient cholesterol excretion;
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this association with disturbances in lipid homeostasis provides biological evidence for its involve-
ment in AD (Table 2). Mechanistically, ABCA1 is involved in both Aβ generation and clearance
[83–85] through its cholesterol-mediated regulation of lipid raft formation and function [86,87].
Cellular and thus lipid raft cholesterol content is a critical determinant of Aβ generation, [88] as
APP is processed into Aβ at lipid rafts; [88,89] a decrease in ABCA1-mediated cholesterol efflux
from the cell, then, increases lipid raft cholesterol levels, driving pathogenic processing of APP to
Aβ [84,90]. This impact of ABCA1 on APP processing has been repeatedly observed in various
mouse models of AD: ABCA1-knockout mice exhibit elevated Aβ levels, increased plaque depo-
sition, and finally, impaired learning and memory [85,91,92].

ABCA1 can also impact the clearance of Aβ through lipidation and regulation of the abundance of
apolipoprotein E (ApoE) [83,85]. Lipidated ApoE binds to and promotes the degradation and
receptor-mediated export of Aβ from the CNS, helping prevent plaque formation [93–95].
ABCA1-mediated loss of cholesterol efflux, leads to reduced levels of lipidated ApoE, thereby
hindering Aβ degradation and increasing amyloid plaque formation [82,83].

While loss of ABCA1 function may be pathogenic in AD, data on augmented ABCA1 function
indicate that it may help reduce AD-related effects. ABCA1 overexpression in a murine AD model
decreased Aβ levels, plaque load, and reactive microglia [96]. Additionally, ABCA1 agonism in a
mouse expressing human ApoE4 enhanced cholesterol efflux, thereby decreasing Aβ, increasing
ApoE4 lipidation, and improving cognitive deficits [97]. Administration of the same peptide to
non-human primates transiently increased ApoE plasma levels and Aβ42/40 ratio [98]. Together,
these data indicate that targeted enhancement of ABCA1 function has therapeutic potential for AD.

Because ABCA1 disturbance reduces effective cholesterol excretion and overall lipid homeostasis,
it is biologically linked not only in AD, but also CAD (Table 2). Mutations in ABCA1 are associated
with susceptibility to both AD and CAD [82]. Pharmacologic therapies currently being investigated
for ABCA1 dysfunction in AD are also gaining traction in the cardiometabolic state with promising
preclinical evidence.

For example, CS-6523, a small-molecule ApoE mimetic, is an ABCA1 agonist, leading to
enhanced lipid transport through ABCA1, which supports multiple anti-atherogenic pathways
[99,100]. Preclinically, intravenous CS-6523 reduced cholesterol and high-density lipoprotein
(HDL)-cholesterol levels while increasing HDL particle levels [98]. Additionally, CS-6523 promoted
Aβ clearance from the brain [98]. At the level of gene and protein expression, the small molecule
E17241 upregulates ABCA1 mRNA and protein expression via protein kinase C zeta (PKCζ),
eliciting similar changes in lipid dynamics as CS-6523: increased ABCA1-mediated cholesterol
efflux and reduced total cholesterol levels [101].

Additionally, liver X receptor (LXR) agonists, which promote expression of RCT genes, including
ABCA1, have also shown therapeutic potential for the treatment of CAD (Table 2) [102]. Notably,
a non-lipogenic LXR-β small-molecule inducer of ABCA1 expression effectively reduced weight
and improved glucose homeostasis in mice fed a high-fat diet [103].

ABCA7
Like ABCA1, GWAS have repeatedly identified ABCA7 as a risk factor for AD [82]. ABCA7 is the
strongest genetic risk factor for AD in the African American population outside of ApoE, [104] and
loss-of-function mutations are associated with an 80% increased risk in African American ances-
try [105] and a 100% to 400% increased risk in populations with European ancestry [106,107].
ABCA7 single-nucleotide polymorphisms are associated with brain amyloidosis, [108] changes
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in gray matter density, [109] and Braak staging, a measure of neurofibrillary tangle development,
which is associated with cognitive decline [110].

ABCA7 facilitates the efflux of phospholipids, and to a lesser extent cholesterol, from inside the
cell [82]. Similar to ABCA1, changes in ABCA7 function impact membrane composition and
apolipoprotein expression and lipidation levels, thereby altering Aβ generation and clearance.
ABCA7 additionally promotes microglial phagocytosis through an unknown mechanism, linking
AD-related mutations to neuroinflammation [82]. Accordingly, loss of ABCA7 function increases
pathological APP processing and decreases Aβ transport across cells in an in vitro model of
the blood-brain barrier [82,111]. Other studies have demonstrated a decrease in microglial
phagocytosis of Aβ and mislocalization of a receptor facilitating Aβ clearance (LRP1) in the
absence of ABCA7 [112,113]. Deletion of ABCA7 from multiple animal models of AD increased
Aβ levels and plaque formation and reduced spatial learning [114–117]. The role of ABCA7 on
microglial activation and immune response [114] is less clear but increasing interest in Aβ-
independent mechanism of AD treatment make these worthy avenues to pursue, especially in
light of the increased focus on triggering receptor expressed on myeloid cells 2 (TREM2) in
both AD and other neurodegenerative disorders [118].

Therapeutic potential of ABC transporter pharmacotherapies
ABC transporters have broad pathophysiological relevance to both rare monogenic and common
human diseases [2,193]. As such, they represent a compelling opportunity for both drug and
gene therapy discovery. Currently, there are four FDA-approved pharmacological therapies
for the monogenic, ABCC7-associated CF—ivacaftor (KALYDECO®, Vertex Pharmaceuticals),
lumacaftor/ivacaftor (ORKAMBI®, Vertex Pharmaceuticals), tezacaftor/ivacaftor (SYMDEKO®,
Vertex Pharmaceuticals), and elexacaftor/tezacaftor/ivacaftor (TRIKAFTA®, Vertex Pharmaceuticals)
[194]—and they provide robust proof of principle for the small-molecule druggability of ABC
transporters. Most importantly, they offer valuable insight into early research strategies to identify
and develop positive functional modulators of other ABC transporters.

As with other ABC transporter-related diseases, CF was previously only treated symptomatically,
[195] but more sophisticated pharmacological compounds that directly address the underlying
genetic CFTR defects are demonstrating excellent success in CF treatment [196]. The current
stable of approved therapies all directly engage CFTR protein to resuce dysfunction and are most
effective when used in combination. Indeed, while ivacaftor acts as a potentiator of CFTR chloride
efflux, lumacaftor, tezacaftor, and elexacaftor serve as synergisticcorrectors ofmutant CFTRprotein
trafficking. Thus, in combination, these compounds enable the pharmacological rescue of both traf-
ficking and transport mutations. Importantly, these therapies work across multiple genotypes,
[197] addressing approximately 90% of the CF population, [198] which highlights how small-
molecule modulators can address multiple disease genotypes. The convergence of genetic testing
andmutation characterization can help clarify howmutations in one target predict functional changes
in others [40,82]. In many cases, such a strategy for understanding and targeting the molecular pa-
thology at the heart of CF could be generalized to other ABC transporter-associated diseases (see
Clinician’s Corner). Additionally, gene, mRNA, and precision gene editing therapies to address rare
genetic forms of ABC transporter disease are also currently under investigation, including in CF [199].

In vitro data indicate that approved CFTR modulators can act through a conserved mechanism
against other disease-associated ABC transporters, such as the successful preclinical use of
ivacaftor in correcting disease-associated transporter dysfunction due to mutations in ABCB4,
[200] ABCB11, [41] and ABCA3 [42] as well as lumacaftor in rescuing STGD-associated
mutations in ABCA4 [64]. Beyond CFTR modulators and as disussed earlier, the most widely
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Clinician’s Corner
ABC transporters both cause and
contribute to human disease. Rare
monogenic ABC transporter diseases
are likely to be underdiagnosed and
generally lack meaningful therapeutic
options.

Diagnosis of patients with these
disorders is a significant challenge
and a subsequent barrier to both a
biological understanding of disease
(e.g., its mechanism and natural history)
and the initiation and success of drug
development.

In rare genetic disease, an understanding
of the disease’s genetic landscape
and the functional impact of
pathogenic mutations is imperative
for both informing diagnosis and
enabling precision drug development.

A concerted research effort that
integrates real-world clinical data and
experience with nonclinical, mechanis-
tic research can significantly advance
the understanding of these diseases,
enabling both patient identification
and drug discovery.

Cystic fibrosis serves as a model for
how such a collaborative approach
can empower drug discovery and the
delivery of life-changing medications.
The clinical success of CFTR-targeting
drugs has opened a world of therapeu-
tic possibilities for targeting other ABC
transporters known to play an etiologic
role in both rare and common diseases.
examined ABC transporter pharmacological corrector is the pharmacological chaperone 4-PBA,
which has consistently demonstrated an ability to rescue expression of folding and trafficking
mutations in various ABC transporters, including ABCA1, [201] ABCC6, [1] ABCB4, [44]
ABCB11, [45] and ABCA4 [40]. These observations speak to the value of leveraging learnings
from CFTR modulator biochemistry to address ABC transporters as a holistic class of targets.
To this end, a deep understanding of the mechanisms of action of CFTRmodulators and the tech-
niques used to explore them will greatly advance research of ABC transporters overall.

One such technique, cryogenic electron microscopy (cryo-EM), has revolutionized the under-
standing of structurally challenging membrane proteins, such as ABC transporters (Table S1;
reviewed in Hou et al, 2022 [202] ), ion channels, and G-protein-coupled receptors. Over the
last several years, cryo-EM has emerged as a foundational technique for structure-based
drug design (Box 2), which enables the identification, design, and optimization of small-
molecule compounds based on an understanding of the molecules’ physical engagement with a
biological target [203]. Building upon a foundation established through earlier homology modeling
and ligand-directed drug design based on ABC transporter modulators, cryo-EM structures of
membrane proteins are now providing key insights into modulator binding and pharmacological
mechanisms of action for ABC transporters. Notably, newly identified structures illustrate how
approved CF therapies bind CFTR and provide key insights into the mechanisms of small-
molecule correction of protein trafficking and gating defects [204–206]. The potential to understand
how bound drug molecules interact with target proteins and elicit pharmacological effects
will prove to be a transformational tool in accelerating drug design efforts for other therapeutically
important ABC transporters. Atomic-level insights of ligand-protein interactions at binding sites
within a transporter can provide critical data into mechanism of action of a compound class,
while computational leveraging of the observed topologies of binding “hotspots” from one trans-
porter to another can provide the basis for understanding target druggability across the ABC trans-
porter proteome using a platform approach [207]. Indeed, the computational modeling of CFTR
modulators at other ABC transporters, [208] highlight the potential for structure-directed develop-
ment of novel small-molecule therapeutics for the treatment of ABC transporter-associated
disease. Furthermore, next-generation, predictive, artificial intelligence-driven structural 3D-
homology modelling (i.e., AlphaFold [209] ) fill a gap for understanding ABC transporters currently
lacking experimentally determined structures.

While CFTR modulators and 4-PBA provide pharmacological proof of principle for the clinical
rescue of pathogenic ABC transporter mutations associated with rare, monogenic disease, the
well-established biology of these transporters highlights further opportunity to treat more
common or complex diseases. For example, while ABCB11 mutations can cause PFIC2, they
are also linked to more transient forms of cholestasis, such as ICP and benign recurrent
Box 2. Structure-informed drug design facilitates small-molecule modulator development

• Structure-based drug design (SBDD) is a highly effective drug discovery strategy that incorporates high-resolution
structural information of drug targets with computational modeling to design novel small molecules that bind and
modulate target activity

• Iterative structural modeling of proteins, nucleic acids and large protein assemblies, and structures of multiple liganded
complexes can be used to drive ligand design

• Ligand design is often conducted using algorithms for computational docking of known ligands to target active sites,
as well as docking and scoring of large virtual compound libraries to a given structural model

• Protein structures have traditionally been determined via X-ray crystallography, and for smaller targets (<30 kDa), nuclear
magnetic resonance (NMR)

• In recent years, transformative advances in technologies and data analysis have brought the use of cryo-electronmicroscopy
(cryo-EM) to the forefront for solving structures of highly challenging targets such as membrane proteins and large molecular
assemblies, including liganded complexes with active drug molecules
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Outstanding questions
What exact protein-folding and ER
degradation pathways are involved
in ABC transporter synthesis and
trafficking, and how are these
processes disrupted in ABC transport-
related disease?

What are the biophysical mechanisms
driving substrate transport for disease-
relevant ABC transporters, and how
are they altered by ABC transporter
mutation?

What are the molecular- and atomic-
level mechanisms of action of the
approved CFTR potentiator, corrector,
and amplifier compounds?

How can lessons from other membrane
protein classes, such as ion channels,
solute carriers (SLCs), and G-protein-
couple receptors (GPCRs), enable
drug discovery?

What is the contribution of monogenic
disease-causing ABC transporters to
more common and complex disease
states?

How do pathogenic missense mutations
cause ABC transporter dysfunction, and
is there a conserved cross-target
mechanism for rationalized identification
of novel therapeutics?

What are the genetic disease modifiers
that influence the presentation of several
ABC transporter-related diseases?
intrahepatic cholestasis. ThoughABCB11mutations are neither necessary nor sufficient for these
disorders, it is plausible that elevated wild-type ABCB11 expression and function could hold
therapeutic benefit for patients with or without ABCB11 mutations [45] by increasing bile acid
efflux for the treatment of these forms of cholestasis. Similarly, for ABC transporters without
monogenic associations, both GWAS and mechanistic data can support their potential as
pharmacological entry points into the modulation of disease-relevant biology. In this manner,
ABCA1 is a well-rationalized drug target for AD, [85,91,92] CAD, [210] and diabetes, [211]
among others. Recent pharmacological data have demonstrated that gain of ABCA1 function
has potential for the treatment of both AD and type 2 diabetes [85,91,92,102,212]. A multitude
of other transporters have similar connections to human pathology, warranting further research
to uncover opportunities to leverage the ABC transporter class for drug development.

Concluding remarks
From perspectives of both relevance and tractability, ABC transporters represent a compelling
protein class for drug discovery. Biologically, their expansive involvement in human physiology
is defined by their broad expression profile and diverse array of endogenous substrates. These
myriad and complex roles have implicated many individual transporters in both the causation
and/or susceptibility to disease. Pharmacologically, a growing body of literature highlights that
small-molecule compounds can correct trafficking and transport deficits that arise from ABC
transporter mutations, as exemplified by the success of FDA-approved CFTR positive functional
modulators, and furthermore, may be effective in enhancing wild-type transporter expression and
function. Moreover, the highly conserved structure and mechanism of both the folding and func-
tion of ABC transporters support pharmacological target hopping and will accelerate ABC
transporter-related drug discovery. A future goal will be to reconcile the mechanisms of action
for both current and new ABC transporter-directed modulators with target structure and
disease-relevant molecular genetics. Such unified, class-based understanding will greatly enable
rationalized, precision drug design for ABC transporter targets (see Outstanding questions).
Thus, further research into the basic biology and disease relevance of ABC transporters, com-
bined with a focused drug discovery approach to what is a relatively underexplored drug target
class, could deliver first-in-class therapeutics to significantly transform the treatment of ABC
transporter-associated disease.
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